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Testing Two Versions of Lattice Gauge Theory: 
Creutz Ratios in U(1)3 

Kevin Cahill I and Randolph Reeder 1'2 

In our simplicial version of lattice gauge theory, we approximate Euclidean path 
integrals by tiling space-time with simplexes and by linearly interpolating the 
fields throughout each simplex from their values at the vertices. We compare 
this method with Wilson's lattice gauge theory for U(1) in three dimensions. As 
a standard of comparison, we compute the exact values of Creutz ratios of 
Wilson loops in the continuum theory. Monte Carlo computations using the 
simplicial method give Creutz ratios within a few percent of the exact values for 
reasonably sized loop at /~ = 1, 2, and 10. Similar computations using Wilson's 
method give ratios that typically differ from the exact values by factors of 2 or 
more for 1 ~</~ ~< 3.5 and that have the wrong/~ dependence. The better accuracy 
of the simplicial method is due to its use of the action and domain of integration 
of the exact theory, unaltered apart from the granularity of the simplicial lattice. 
We also present data on the action density and the mass gap. 

KEY WORDS: Lattice gauge theory; simplex; interpolation; Wilson loops; 
Creutz ratios; U(1); Euclidean path integrals. 

I N T R O D U C T I O N  

In  1974 W i l s o n  i n v e n t e d  t e c h n i q u e s  tha t  h a v e  since b e c o m e  k n o w n  as lat-  

tice gauge  theory .  ~1) C r e u t z  (2 31 a n d  o the r s  l a te r  s h o w e d  W i l s o n ' s  la t t ice  

gauge  t h e o r y  to be  a p r ac t i ca l  w a y  to s tudy  gauge  t h e o r i e s  n o n p e r t u r -  

ba t ive ly .  H o w e v e r  the  a c t i o n  a n d  d o m a i n  of  i n t e g r a t i o n  of  W i l s o n ' s  m e t h o d  

differ f r o m  those  of  the  exac t  t h e o r y  unless  the  g r o u p  e l emen t s  are  n e a r  the  

ident i ty .  Since  the  ac t i on  a n d  d o m a i n  o f  i n t e g r a t i o n  c o n t r o l  the  s a m p l i n g  of  
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fields in a Monte Carlo simulation, these differences may lead to errors at 
intermediate and strong coupling, where the group elements are not always 
near the identity. 

In a theory with a running coupling constant, one may try to reduce 
these errors by working at weak coupling. But in SU(3) the physical size of 
the lattice spacing shrinks with the coupling g like e x p [ - 1 / ( 2 b o  g2)] with 
bo = 11/(16~2). (4) If one reduces the coupling, then one must compute on a 
larger lattice in order to encompass the same physical phenomenon. A 
reduction of g from 1.0 to 0.5 requires an increase of a 104 lattice to one of 
size (101~ 4 , which is inconveniently large. 

In an earlier paper, (5) we proposed and tested a method for 
approximating Euclidean path integrals at arbitrary coupling. In this 
method one tiles space-time with simplexes and linearly interpolates the 
fields throughout each simplex from their values at the vertices. The fields 
are defined throughout space-time. The method uses the action and domain 
of integration of the exact theory, unaltered apart from the granularity of 
the simplicial lattice. The simplicial method is similar to the finite-element 
method of C. M. Bender, G.S. Guralnik, and D.S. Sharp, (6~ and differs 
from it by its use of linear interpolations in simplexes rather than nonlinear 
splines in cubes. 

Here we describe an application of this simplicial method to U(1) in 
three dimensions. By using a heat-bath Monte Carlo, (7) we computed the 
mean value of the action density, the (vanishing) mass gap, and the Creutz 
ratios of various quartets of Wilson loops. We derived an exact formula for 
the Creutz ratios )~(L, J) of U(/)3 and used it as a standard to compare the 
accuracy of the simplicial method with that of Wilson's lattice gauge 
theory. We made this comparison at three values of the dimensionless 
inverse temperature /~ = 1/(ag2), where a is the lattice spacing. For  loops 
that have a spatial extent La of between 4 and 7 lattice spacings and a tem- 
poral extent Ja of between 2 and 8 spacings, the simplicial method on a 
162x 64 lattice gave Creutz ratios z(L, J) within 20% of the exact values 
for strong coupling/~ = 1, intermediate coupling/~ = 2, and weak coupling 
/~ = 10. For  these loops and these/?s, the average error of our Creutz ratios 
is 5.9 %. In contrast, Wilson's lattice gauge theory, to judge from results 
reported by Bhanot and Creutz (8) and by Ambjcrn, Hey, and Otto, (9~ gives 
Creutz ratios that typically differ from the exact values by factors of 2 or 
more for 1 ~</~ ~< 3.5 and that have the wrong/3 dependence. But according 
to the weak-coupling expansion of Miiller and Riihl, (1~ Wilson's method 
on an infinite lattice should display acceptable errors at/~ = 10. 
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A C T I O N S  A N D  D O M A I N S  OF I N T E G R A T I O N  

The basic variables of the Wilson method are the elements of the 
gauge group. These group elements, which are associated with the links of 
the lattice, may be parameterized in terms of the gauge fields An ~ as U, = 
exp(igaASt~). For  U(1) the elements of the gauge group are simply the 
phases U~ = exp(igaAn) where A n is the gauge field. 

In Wilson's method, the group elements, one for each link, run 
independently over the manifold of the gauge group. The group manifold is 
compact and (except for Abelian groups) curved. The domain of 
integration is the direct product of copies of the group manifold, one for 
each link. In the exact continuum theory, the domain of integration is the 
product of copies of the real line, one for each gauge field at every space- 
time point. Even apart from the inevitable granularity of the lattice, the 
two domains of integration are very different. However, for weak coupling, 
the dimensionless angles [gaA,,~[ or [gaA,[ stay small and the group 
elements remain close to the identity where the metric of the group 
manifold is nearly unity. Thus, for weak coupling, Wilson's domain of 
integration effectively resembles that of the exact theory. But for stronger 
coupling, the topology and curvature of the group manifold become impor- 
tant. 

Apart from a constant, the Wilson action is proportional to the sum, 
over the elementary squares of the lattice, of the real part of the trace of the 
path-ordered product of the (oriented) group elements of the links around 
the square. To lowest order in the dimensionless angles IgaA,,~l or ]gaA,[, 
the Wilson action is equal to that of the continuum theory, apart from the 
granularity of the lattice. Thus for weak coupling, Wilson's action is close 
to that of the exact theory. But at stronger coupling the higher-order terms 
in Wilson's action become important. 

THE S I M P L I C I A L  M E T H O D  

In the simplicial method, space-time is filled with a cubic lattice each 
cube of which is tiled with six (tetrahedral) simplexes. Equivalent simplexes 
in different cubes are oriented the same way. Each space-time point x lying 
in a simplex with vertices vi can be uniquely expressed in the form 

3 

i - - O  

in which the nonnegative weights Pi sum to 1. We use this same formula to 
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linearly interpolate the field An(x) at the point x from its values A(n, vi) at 
the vertices v~ 

3 

An(x) = ~ piA(n, vi) (2) 
i = 0  

Since the ps sum to unity, Po is 1 minus the sum of the components of the 
three-vector p = (Pl, P2, P3). One may obtain this three-vector by inverting 
the 3 x 3 matrix M defined as Mji = (vi) j -  (Vo)j and by forming the matrix 
product p = M  ~(X-Vo). The resulting formula (2) for the gauge field 
depends on the simplex the point x is in. For the simplex whose vertices are 
Vo=(i, Lk)a,  v l= ( i+  l, Lk)a,  v2=(i+ l, j +  l,k)a, and v3=(i+ l, j +  l, 
k +  1)a, the interpolated gauge field at the point x =  (x, y, t) is 

A,(x) = [ ( i+  1 ) a - x ]  A(n, i, j, k) 

+ [ ( j - i ) a + x - y ]  A(n, i+ 1, j, k) 

+ [ - ( k - j ) a +  y -  t] A(n, i+ 1, j +  1, k) 

+ ( t - k a ) A ( n ,  i+ 1, j +  1, k+ 1) (3) 

Similar formulas obtain for the other five generic simplexes. 
The field strength of the interpolated field An(x) is F,~,n(x)= 

8hAm(x) - ~mAn(x). The field A is continuous, but its derivatives have step- 
function discontinuities on the boundaries between simplexes. The field 
strength F inherits these integrable singularities. A key feature of the 
present method is that the interpolated fields are defined throughout space- 
time. It is therefore possible to use the action of the continuum theory 
unaltered apart from the granularity of the simplicial lattice. Thus we 
define the Euclidean action of the interpolated field An(X) to be the integral 
over space-time of the sum of the squares of the interpolated field strengths 

S(A) = f d3x~Fmn(x) 2 (4) 

Because the interpolation is linear in the field variables A, the 
Jacobian det[~An(x)/6A(m, i, j, k)] cancels in ratios of path integrals. By 
restricting space-time to a finite volume, one thus approximates the 
vacuum-expected value of a Euclidean time-ordered operator Q(A) by a 
multiple integral over the A(n, i, j, k)s 
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where Q(A) is obtained from Q(A) by replacing the operator An(x) with 
the interpolated field An(x). 

We used the temporal gauge so as to have only two gauge fields An(x), 
n = 1 and 2, but this is not an essential feature of the simplicial method. As 
in Wilson's method, it is not necessary to fix the gauge. We used three lat- 
tices: 163, 162x 32, and 162x 64. For  the small lattice with 4,096 vertices, 
the action is a quartic polynomial in 8,t92 variables, the A(m, i, j, k). For 
the medium and large lattices with 8,192 and 16,384 vertices, the action 
involves 16,384 and 32,768 As, respectively. However, because each field 
variable A(m, i, j, k) influences the action in only 24 simplexes, it is coupled 
to only 30 of the 8,192, 16,384, or 32,768 variables. 

We used the fact that the action is quadratic to write a heat-bath 
algorithm (7) that only requires knowledge of the first and second 
derivatives of the action with respect to each field variable. The algorithm 
constructs the parabola that describes the dependence of the action on each 
A, goes to the minimum of the parabola, and then adds noise at the inverse 
temperature /3. In terms of the dimensionless scaled field variable 
~(n, i, j, k) - agA(n, i, j, k), the formula for d~ is 

d.  = -S ' / S "  + x(S") 1/2 (6) 

in which S' and S" are the first and second derivatives of the action with 
respect to the field va r i ab l e . ,  and x is a random number normally dis- 
tributed on ( - o o ,  oo). We used URAND (11) and the polar method of Box, 
Muller, and Marsaglia (12) to write a fast subroutine that generates a few 
thousand xs per call. The update d .  of each field variable is as big as 
required, and thermalization is quick. We used MACSYMA 3 to calculate 
the derivatives S' and S" and to express them in FORTRAN. For  the 
162 x 64 lattice, each sweep took 17 s on a Ridge 32C computer with 4MB 
of RAM. 

T H E  A C T I O N  D E N S I T Y  

The most accessible of the physical quantities we measured is the mean 
value of the action per cube, ( S ) c .  The corresponding quantity in Wilson's 
lattice gauge theory is the mean value of the action per plaquette, ( S ) D ,  
or of the internal energy per plaquette, ( P ) =  (S):z/f i .  In three dimen- 
sions, (S) , .  = 3 ( S ) D  = 3/3(P) .  

The action is a quadratic form which may be diagonalized. Thus 
the mean value of the action in a single cube can be computed exactly: it is 

3 MACSYMA is a symbol manipulator developed by MIT and marketed by Symbolics, Inc. 
(617-577-7350). 
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just ( S ) c = ( N - N o ) / ( 2 N c )  where N is the number  of as, No is the 
number of zero modes, and Arc -- N/2 is the number  of cubes in the lattice. 
Equivalently, ( S ) c =  1 -  (No~N). In the temporal gauge, the zero modes 
of the simplicial lattice are due to the invariance of the action of the 
continuum theory under time-independent gauge transformations. We 
determined the number  of zero modes by using MACSYMA and 
MATLAB('3)to form and diagonalize the quadratic part  of the magnetic 
action for a spatial slab of an N9  x Nt lattice. We found No = 5 + 3(N, - 2). 

Thus, for the 163 lattice with N- -8192  there are N o = 4 7  zero modes, 
and the mean value of the action per cube is (S)c  = 0.9943. A run from a 
cold start, i.e., all c~s zero, at/3 = 2 gave (S)c  = 0.9933 after 8000 sweeps of 
which the last 7000 were averaged. 

For  the 162 x 32 lattice with N =  16,384, there are No = 47 zero modes, 
and the mean value of the action per cube is (S)c  = 0.9971. A run from a 
cold start at/3 = 10 gave ( S ) c  = 0.9974 after 2450 sweeps of which the last 
1800 were averaged. A similar run at /3 = 2 gave (S)c  = 0.9977 after 2785 
sweeps of which the last 800 were averaged. 

For  the 162x64 lattice, N=32,768,  N o = 4 7 ,  and ( S ) c = 0 . 9 9 8 6 .  A 
run from a cold a cold start at/~ = 10 gave ( S ) c  = 0.9982 after 2457 sweeps 
of which the last 750 were averaged. Similar runs gave ( S ) c =  0.9981 at 
/3=2 after 2560 sweeps, of which the last 600 were averaged, and 
( S ) c = 0 . 9 9 9 0  at /3= 1 after 1650 sweeps, of which the last 550 were 

averaged. 
Because the theory is quadratic, the mean value of the action per cube 

is independent of the coupling /L It is therefore pointless to search for 
hysteresis loops or phase transitions. 

T H E  V A N I S H I N G  M A S S  G A P  

There is no mass gap in this theory. We verified that our Monte  Carlo 
gave a vanishing mass gap by using it to compute the product of the mass 
gap E times the lattice spacing a from the formula 

[ (c~(n, i, j, s: + 1 + k) c~(n, i, j, k ) ) ]  (7) 
aE= ,~-~o~lim In (c~(n, i , j ,K+k)~(n, i , j ,k))  

a sum being understood over i, j, and k in both the numerator  and the 
denominator. On the 163 lattice, a run of 8000 sweeps and 100 
measurements, starting from fields thermalized with 16,000 sweeps at fi = 2, 
gave for x = 0  through 6 the values aE=0.0020,  0.0011, 0.0008, 0.0005, 
0.0004, 0.0002, and 0.00006. On the 162x 64 lattice, a run of 200 sweeps 
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and 100 measurements, starting from fields thermalized with 12,700 sweeps 
a t / ~ =  1, gave for ~c=0 through 6 the values a E =  0.0204, 0.0119, 0.00087, 
0.0071, 0.0061, 0.0053, and 0.0049. 

EXACT F O R M U L A  FOR C R E U T Z  R A T I O S  

The Wilson loop (functional) is the mean value in the vacuum of a 
path-ordered exponential of a line integral along a loop of the Euclidean 
connection. In his original article on lattice gauge theory, (1) Wilson pointed 
out that evidence of confinement could be obtained from an area term in 
the logarithm of the Wilson loop. In 1979 it was recognized that Wilson 
loops vanish in more than two dimensions due to a string singularity in the 
line integral of the connection. (14~ Later Creutz introduced the practice of 
measuring the ratio of products of Wilson loops in a way that separates the 
physically important area term from this singularity. (2~ In order to have a 
standard by which to judge the simplicial interpolative method and to 
compare it to Wilson's method, we shall now calculate the Creutz ratios of 
Wilson loops exactly in the continuum theory. 

In temporal-gauge U(1), the Wilson loop is the mean value in the 
vacuum of the Euclidean time-ordered product 

W(r,t)=(Ol Texp[ig f An(x)dxn] [O) (8) 

in which the integral runs from 0 to r at time 0 and from r to 0 at time t. It 
will be useful to consider the generating functional W[j]= 
(0] T exp [i ~ An(x)jn(x) d3x] [0). On the one hand, the Wilson loop is the 
generating functional W[j] for the current 

jn(x) = c5,,2 6(xl) 0(x2) O(r -- x2)[-6(x0) -- fi(Xo -- t)] (9) 

On the other hand, the generating functional is well-known to be given by 
the formula 

W[j] =exp I - ( g 2 / 2  ) f jm(X)Omn(X, y)Jn(Y)d3x d3y 1 

where the temporal-gauge Euclidean two-point function is 

(lO) 

D~n(x,y)=(2z 0 3fk-Z(~mn+x~2kmkn) exp[ik.(x-y)] (11) 

in which k =  (ko, kl ,  k2) and k 2 = k - k .  By substituting the current jn(x) 
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into the formula for the generating functional W[-j], we find for the 
Wilson loop the expression 

In[ W(r, t)] = -(g2/n3)[U(r, t )+ U(t, r)] (12) 

where U(r, t) is the integral 

U(r, t) = ~ d3k sin(k2 r/2)2 sin(ko t/2 )2/(k2k2 2 ) (13) 

This integral is logarithmically divergent due to a string singularity (14) 
inherent in the current in(x), and the Wilson loop W(r, t) therefore 
vanishes. This divergence may be canceled by forming the Creutz ratio (2) of 
products of related Wilson loops 

F W(r, t) W(r - a, t - a)l  
z(L, J ) - z ( r / a ,  t /a)= - In  L-W-~- a.- ~ W(7, t (14) 

The Creutz ratio is insensitive to terms in ln(W) that are independent of r 
and t or that depend linearly on r or t. Whenever the loops are dominated 
by an area law, g(L, J) directly measures the string tension, x(L, J) ~ a(fi). 
In Wilson's lattice gauge theory, this occurs when L and J are large or 
when the coupling is large. (3) 

It is useful to write the Creutz ratio in the form 

)~(r/a, t /a)= ( g2/rc3)[ U(r, t ) -  U(r - a, t) 

+ U(t, a ) -  U ( t -  a, r) 

+ U(r - a, t - a) - U(r, t - a) 

+ U ( t - a ,  r - a ) -  U(t, r - a ) ]  (15) 

because the difference of two Us with the same second argument is the dif- 
ference of two convergent integrals 

U(r, t) - U(r', t) = C(r', t ) -  C(r, t) (16) 

the integral C(r, t) being 

C(r, t )= 2re f ?  dx I ?  dy[sin(rx/2)/x]2 c~ 

;o o = 2~t dx[sin(rx/2t)/x] 2 Ko(x) (17) 
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where K0 is Macdonald's function. The second derivative of C(r, t) with 
respect to r/t is a known integral. After integrating twice with respect to r/t, 
one finds 

C(r, t) = rc2t/2 ~ |r/t dx ln[x + (1 + x2) 1/2 ] 
~o 

= (Tz2t/2)F(r/t) (18) 

in which the function F(q) is defined by 

F ( q ) = l - q - - [ q + ( l + q 2 )  1/2] l + q l n [ q + ( l + q 2 ) l n ]  (19) 

Our final formula for the exact Creutz ratio in U(1)3 is, therefore 

z(L, J ) =  (27tfl) l { ( j _  1) F [ L / ( J -  1)] -JF(L/J)  

+ (L - 1) F[J/(L - 1)] -LF(J /L )  

+ J F [ ( L -  1 ) / J ] -  ( J -  1 ) F [ ( L -  1 ) / ( J -  1)] 

+ L F [ ( J -  1 ) / L ] -  ( L -  1) F [ ( J -  1) / (L -  1)]} (20) 

in which L = r/a and J =  t/a are the extents of the largest loop of the ratio 
in units of the lattice spacing a. The exact Z is a symmetric function 
z (L ,J )=z(J ,  L) and depends upon /~ exclusively through the factor 
1/~ = ag 2, as expected in a free theory. In the limit of large J, )~(L, J )  
(2gfl) -1 t n [ L / ( L -  1)] which is the difference a [ V ( L a ) -  V (La -a ) ]  where 
V(r) is the static potential of two charges g separated by the distance r: 
V(r) = (g2/2zc)In(r). 

MONTE CARLO CREUTZ RATIOS FROM THE 
SIMPLICIAL METHOD 

To compute Creutz ratios on the 163 lattice at fl = 2, we did 16,000 
sweeps starting from thermalized fields and measuring Wilson loops every 
8 sweeps. The Creutz ratios z(L, 2) for L = 4  through 8 are within 4% of 
the exact ratios, and )~(3, 2) is off by only 7%. The )~(L, 3)s are within 7 to 
15 % of the exact values for L = 4 through 8. The )~(L, 4)s have errors of 9 
to 27 % for L - -4  through 8. 

The accuracy of the Zs increases with L, the number of vertices in the 
spatial direction, and decreases with J, the number in the temporal direc- 
tion. In the temporal gauge, the loops run only in spatial directions; the 
missing temporal legs must be made up by gauge invariance, which is 
enforced only by the (unnormalized) projection operator e x p ( -  HT) where 



1052 Cahill and Reeder 

T is the temporal  extent. The temporal  extent of this lattice is 16a, which is 
small compared to the inverse of the nearly vanishing mass gap. The rate at 
which the errors increase with J is smaller on the 162 x 32 and 162 x 64 lat- 
tices by factors of 2 and 4, respectively. These errors at large J are therefore 
a finite-duration effect due to our use of the temporal  gauge and exacer- 
bated by the absence of a mass gap. The errors due to the granularity of 
the simplicial lattice are small when L is at least 4. 

To compute Creutz ratios on the 162x 32 lattice at /3 = 2, we started 
with thermalized fields and did 3700 sweeps with measurements every 2 
sweeps. For  L = 4 through 8 and J = 2 and 3, the ;g(L, J)s are within 3 % of 
the exact values, except for ;((4, 3) which is off by 7%. The z(L, 4)s have 
errors of from 3 to 16 % for L = 4 through 8. To compute Creutz ratios on 
this 162 x 32 lattice at/3 = 10, we did 4800 sweeps with measurements every 
3 sweeps starting with thermalized fields. The errors of these Creutz ratios 
are similar to those gotten at /3 = 2 on this lattice. Both sets of errors are 
about  half as big as those of the 163 lattice. 

Table I contains the Creutz ratios we obtained from runs at /3 = 1 on 
the 162x 64 lattice. To compute these ratios, we made 12,000 sweeps with 
measurements every other sweep, starting from fields thermalized by 700 
sweeps. For  L = r/a -- 5 through 7 and J =  t/a = 2 through 6, these z(L, J)s 
are within 7 % of the exact values. For  L = 3 and 4 and J = 2 and 3, they 
have errors of 6 % or less. 

Table I I  contains the Creutz ratios we obtained from runs at/3 = 2 on 
the 162x 64 lattice. To compute these ratios we did 2750 sweeps with 
measurements every third sweeps, starting from thermalized fields. For 
L = 6 through 8 and J =  2 through 8, these z(L, J)s are within 8 % of the 
exact values. For  L = 4 and 5 and J - - 2  through 4, they have errors of less 
than 6 %. 

Table I I I  contains the Creutz ratios we obtained from runs at /~ = 10 
on the 162x 64 lattice. To compute these ratios we did 1650 sweeps with 
measurements every third sweep, starting from thermalized fields. For 
L = 5 through 8 and J =  2 through 8, these z(L, J)s are within 7 % of the 
exact values, with an average error of only 3.8 %. For  L =  3 and 4 and 
J =  2 through 4, they have errors running from 1 to 11%. 

For  all three values of/3, the Creutz ratios z(L, J)  we got from runs on 
the 162x64 lattice are within 20% of the exact values for L=r/a=4 
through 7 and J =  t/a = 2 through 8. The average error of these Zs is 5.9 %. 
For  L = 5 through 7 and J = 2 through 6, the average error of the z(L, J)s 
is 3.5 % at /3 = 1. For  L = 6 through 8 and J - - 2  through 8, the average 
error of the z(L, J)s is 4.0% at /3=2  and 3.9% a t / 3 =  10. 
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Table  I. Creutz  Rat ios x(r/a, t/a) at 13 = 1 

M o n t e  Car lo  7`s Exact  7`s % error 

Z(3, 2) = 0.12635 + 0.00039 0.12845 - l .63 
Z(3, 3) = 0.08562 ___ 0.00063 0.09157 -6.50 
X(3, 4) = 0.06870 • 0.00091 0.07930 -13.38 
7`(3, 5) = 0.05917 ___ 0.00120 0.07378 19.80 
7`(3, 6) = 0.05327 _ 0.00151 0.07084 -24.80 
7`(3, 7) = 0.04896 • 0.00181 0.06910 29.15 
7.(3, 8) = 0.04577 _ 0.00213 0.06799 -32.68 
7`(4, 2) = 0.12122 + 0.00066 0.11979 1.19 
7`(4, 3 ) = 0.07902 + 0.00108 0.07930 -0.36 
7`(4, 4) = 0.06196 ___ 0.00155 0.06486 -4.48 
7`(4, 5) = 0.05146 • 0.00207 0.05802 -11.30 
7`(4, 6) = 0.04702 • 0.00262 0.05426 -13.34 
;((4, 7) = 0.04149 • 0.00317 0.05198 -20.19 
7`(4, 8) = 0.03993 • 0.00374 0.05051 -20.95 
7`(5, 2) = 0.11852 • 0.00100 0.11611 2.08 
7`(5, 3) = 0.07570 • 0.00167 0.07378 2.61 
7`(5, 4) = 0.05780 + 0.00242 0.05802 4).38 
7`(5, 5) = 0.04714 • 0.00326 0.05028 -6.24 
Z(5, 6) = 0.04311 + 0.00418 0.04590 -6.08 
Z(5, 7) = 0.03699 • 0.00510 0.04319 -14.35 
7`(5, 8) = 0.03635 • 0.00612 0.04141 12.22 
7`(6, 2) = 0.11749 _• 0.00145 0. t 1422 2.86 
7`(6, 3) = 0.07418 • 0.00248 0.07084 4~72 
7`(6, 4) = 0.05470 _+ 0.00366 0.05426 0.80 
7`(6, 5) = 0.04404 • 0.00498 0.04590 -4.05 
7`(6, 6) = 0.04118 • 0.00648 0.04107 0.27 
7`(6, 7) = 0.03467 + 0.00807 0.03802 -8.82 
7`(6, 8 ) = 0.03380 • 0.00993 0.03598 -6.70 
2(7, 2) = 0.11701 • 0.00206 0.11312 3.44 
z(7, 3) = 0.07232 ___ 0.00363 0.06910 4.67 
7`(7, 4) = 0.05571 • 0.00549 0.05198 7.16 
7`(7, 5) = 0.04171 _ 0.00764 0.04319 -3.42 
Z(7, 6) = 0.03675 • 0.01019 0.03802 -3.34 
7`(7, 7) = 0.03867 • 0.01309 0.03471 11.39 
7,(7, 8) = 0.02755 • 0.01655 0.03247 -15.17 
7`(8, 2) = O. 11589 _+_ 0.00286 O. 11243 3.08 
7`(8, 3 ) = 0.07050 • 0.00528 0.06799 3.70 
7`(8, 4) = 0.05892 • 0.00832 0.05051 16.65 
z(8, 5) = 0.04385 • 0.01200 0.04141 5.90 
7`(8, 6) = 0.02800 • 0.01644 0.03598 22.18 
7,(8, 7) = 0.04650 • 0.02208 0.03247 43.20 
7`(8, 8) = 0.02169 __+ 0.02869 0.03007 -27.85 
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Table II, Creutz Ratios X(r/a, t/a) at 13=2 

Monte Carlo Zs Exact ;(s % error 

X(3, 2) = 0.06324 + 0.00046 0.06422 -1.53 
X(3, 3 ) = 0.04242 -I- 0.00074 0.04579 -7.35 
X(3, 4) = 0.03411 + 0.00103 0.03965 -13.98 
;((3, 5) = 0.02925 ___+ 0.00135 0.03689 20.72 
Z(3, 6 ) =  0.02681 + 0.00169 0.03542 -24.32 
;((3, 7) = 0.02434 + 0.00204 0.03455 -29.55 
;((3, 8) = 0.02256 +___ 0.00242 0.03399 -33.64 
Z(4, 2) = 0.06078 + 0.00075 0.05989 1.48 
Z(4, 3) = 0.03911 ___+ 0.00121 0.03965 -1.36 
Z(4, 4)  = 0.03054 __+ 0.00170 0.03243 -5.85 
;((4, 5) = 0.02555 + 0.00223 0.02901 -11.93 
;((4, 6) = 0.02385 + 0.00280 0.02713 -12.10 
;((4, 7) = 0.02085 ___+ 0.00338 0.02599 -19.78 
;((4, 8) = 0.01922 + 0.00400 0.02525 -23.91 
;((5, 2) = 0.05954 + 0.00109 0.05805 2.55 
;((5, 3) = 0.03757 __+ 0.00176 0.03689 1.84 
;((5, 4) = 0.02849 __+ 0.00245 0.02901 -1.80 
X(5, 5) = 0.02318 +__ 0.00321 0.02514 -7.80 
;((5, 6) = 0.02244 +__ 0.00404 0.02295 -2.21 
;((5, 7) = 0.01860 + 0.00488 0.02160 -13.89 
;((5, 8) = 0.01737 _____ 0.00577 0.02071 -16.11 
;((6, 2) = 0.05868 + 0.00148 0.05711 2.76 
;((6, 3) = 0.03675 __+ 0.00236 0.03542 3.77 
;((6, 4) = 0.02763 + 0.00329 0.02713 1.85 
;((6, 5) = 0.02151 ___+ 0.00431 0.02295 -6.27 
;((6, 6) = 0.02170 _____ 0.00544 0.02053 5.69 
;((6, 7) = 0.01767 __+ 0.00657 0.01901 -7.04 
;((6, 8) = 0.01672 + 0.00777 0.01799 -7.05 
;((7, 2) = 0.05819 -I- 0.00190 0.05656 2.89 
;((7, 3 ) = 0.03574 +___ 0.00303 0.03455 3.44 
;((7, 4) = 0.02647 __% 0.00421 0.02599 1.84 
;((7, 5) = 0.02037 + 0.00554 0.02160 -5.69 
;((7, 6) = 0.02034 ___+ 0.00700 0.01901 7.02 
;((7, 7) = 0.01680 __+ 0.00849 0.01736 -3.23 
;((7, 8) = 0.01641 __+ 0.01007 0.01624 1.08 
Z(8, 2) = 0.05798 + 0.00237 0.05621 3.13 
;((8, 3) = 0.03478 _____ 0.00379 0.03399 2.32 
;((8, 4) = 0.02536 + 0.00528 0.02525 0,42 
;((8, 5) = 0.01989 __+ 0.00694 0.02071 -3,93 
)~(8, 6) = 0.01935 + 0.00878 0.01799 7.53 
;((8, 7) = 0.01569 +__ 0.01069 0.01624 -3.39 
;((8, 8) = 0.01574 ___+ 0.01277 0.01503 4.70 
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Table III. Creutz Ratios x(r/a, t/a) at [[3=10 

M o n t e  Car lo  2's Exact  Ks % error 

Z(3, 2) = 0.01270 _____ 0.00012 0.01284 -1.11 
X(3, 3) = 0.00866 • 0.00020 0.00916 -5.44 
]((3, 4) = 0.00710 • 0.00029 0.00793 -10.45 
~(3, 5) = 0.00628 • 0.00039 0.00738 -14.92 
Z(3, 6) = 0.00572 • 0.00049 0.00708 -19.26 
;((3, 7) = 0.00532 • 0.00061 0.00691 -23.01 
;((3, 8 ) =  0.00501 • 0.00072 0.00680 -26.38 
X(4, 2) = 0.01214 • 0.00019 0.01198 1.32 
~(4, 3) = 0.00800 • 0.00031 0.00793 0.84 
X(4, 4) = 0.00635 • 0.00045 0.00649 -2.15 
X(4, 5) = 0.00550 • 0.00060 0.00580 -5.25 
X(4, 6) = 0.00495 • 0.00076 0.00543 -8.79 
2'(4, 7) = 0.00461 __+ 0.00094 0.00520 -11.40 
2'(4, 8) = 0.00435 • 0.00112 0.00505 -13.96 
Z(5, 2) = 0.01188 • 0.00027 0.01161 2.31 
2'(5, 3 ) = 0.00760 • 0.00044 0.00738 3.06 
Z(5, 4) = 0.00590 • 0.00063 0.00580 1.69 
X(5, 5) = 0.00498 • 0.00083 0.00503 -0.98 
~(5, 6) = 0.00444 • 0.00104 0.00459 -3.35 
~(5, 7) = 0.00408 __% 0.00128 0.00432 -5.44 
2'(5, 8) = 0.00386 + 0.00152 0.00414 -6.87 
Z(6, 2) = 0.01177 ___+ 0.00036 0.01142 3.01 
X(6, 3) = 0.00740 • 0.00057 0.00708 4.43 
~(6, 4) = 0.00567 __+ 0.00081 0.00543 4.42 
;((6, 5) = 0.00473 • 0.00106 0.00459 3.11 
2'(6, 6) = 0.00416 __+ 0.00133 0.00411 1.28 
2'(6, 7) = 0.00379 • 0.00162 0.00380 -0.42 
2'(6, 8) = 0.00358 • 0.00191 0.00360 -0.65 
Z(7, 2) = 0.01174 • 0.00046 0.01131 3.80 
X(7, 3) = 0.00729 • 0.00072 0.00691 5.48 
2'(7, 4) = 0.00552 • 0.00101 0.00520 6.09 
2'(7, 5) = 0.00462 • 0.00132 0.00432 7.03 
2'(7, 6) = 0.00403 + 0.00165 0.00380 6.01 
Z(7, 7) = 0.00356 • 0.00199 0.00347 2.43 
2'(7, 8) = 0.00339 • 0.00234 0.00325 4.36 
Z(8, 2) = 0.01169 • 0.00056 0.01124 3.96 
Z(8, 3) = 0.00716 • 0.00088 0.00680 5.30 
g(8, 4) = 0.00531 • 0.00122 0.00505 5.23 
2'(8, 5) = 0.00436 • 0.00160 0.00414 5.30 
Z(8, 6) = 0.00381 • 0.00201 0.00360 5.91 
Z(8, 7) = 0.00333 + 0.00242 0.00325 2.51 
Z(8, 8) = 0.00306 • 0.00284 0.00301 1.62 
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MONTE CARLO CREUTZ RATIOS FROM WILSON'S METHOD 

Bhanot and Creutz (8) and Ambjern et al. (9) have reported data on 
Wilson loops for U(/)3 from runs on a 163 lattice. Both groups fitted square 
Wilson loops to curves of the form 

W(La, La) = exp[ - ~r(/~)L 2 + P(~)L + B(/?)] (21) 

and reported values of the string tension a(/~) for various fl between 1 and 
3.5. They did not report Creutz ratios or the values of any nonsquare 
Wilson loops. In order to extract Creutz ratios z(L, L) for square loops 
from their data, we make the reasonable assumption that the Wilson loops 
W[La, ( L - I )  and W[(L-1)a, La], had they measured them, would 
have fitted the same curves as their W(La, La)s with L 2 replaced by 
L(L-1) and L replaced by L - � 8 9  This assumption is implicit in their 
extraction of string tensions from those curves. 

From this assumption it follows that the Creutz ratios z(L, L), had 
they measured them, would have been given by the relation z(L, L) ~ a(~8) 
with L taken somewhat beyond the midpoint of the range of Ls they used 
to fit their loops. Since Bhanot and Creutz fitted Wilson loops with values 
of L from 1 through 4, we identify in Table IV and Fig. 1 their a(/~)s with 

Fig. 1. 
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method (pluses). The exact Z(3, 3)s are represented by the solid curve. 
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Table IV. Creutz Ratios (from Ref. 8) 
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fl Z(3, 3) Exact ZS % error 

1.2 0.5 0.07631 560 
1.3 0.45 0.07044 540 
1.4 0.34 0.06541 420 
1.54 0.23 0.05946 290 
1.8 0.14 0.05087 180 
1.95 0.048 0.04696 2 
2.44 0.028 0.03753 -25 
2.9 0.018 0.03158 -43 

g(3, 3)s. Since Ambjorn et al. fitted loops with values of L from 4 through 
8, we identify in Table V and Fig. 2 their a(fl)s with Z(7, 7)s. Of the 16 Zs 
so inferred, 2 are within 6% of the exact values; 5 differ by 25 to 59%; and 
9 are off by 150 to 1500%. The errors of these last 9 points cannot be 
ascribed to the crudity of our identification of Zs with as. Nor are they a 

Fig. 2. 
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Table V. Creutz Ratios (from Ref. 9) 

fl ;((7, 7) Exact Zs % error 

1.0 0.55 0.03471 1,500 
1.5 0.22 0.02314 860 
2.0 0.047 0.01736 170 
2.1 0.041 0.01653 150 
2.2 0.022 0.01578 39 
2.3 0.016 0.01509 6 
3.0 0.0075 0.01157 -36 
3.5 0.0041 0.00991 -59 

finite-size effect; in U(1 )3 with the Wilson action such effects are small on a 
163 lattice, (9'16) because of the mass gap. These errors reflect the incorrect fl 
dependence of their Wilson loops. 

W l L S O N ' S  M E T H O D  AT  W E A K  C O U P L I N G  

In order to examine the accuracy of Wilson's lattice gauge theory for 
weak coupling, we turn to the weak-coupling expansion of Mfiller and 
Riihl. (1~ For  an infinite lattice, the first two terms of their weak-coupling 
expansion for a U(1)3 Wilson loop are 

ln[W(La, Ja)] ,~ - + WI(La, Ja) (22) 

By using the numerical values for W1(La, Ja) of Ambjcrn et al., (9) we find 
that the Wilson method on an infinite lattice should give the following 
Creutz ratios for fl = 10: Z(3, 3 ) ~ 0.0099, Z(4, 4) ~ 0.0069, Z(5, 5 ) ~ 0.0053, 
Z(6, 6) ~ 0.0043, Z(7, 7) ~ 0.0036, and Z(8, 8) ~ 0.0031. These values differ 
from the exact Zs by 8.6, 6.3, 5.0, 4.4, 4.8, and 3.1%, respectively, errors 
which are only about twice those of the simplicial method. Wilson's lattice 
gauge theory is thus far better at weak coupling than at intermediate or 
strong coupling. We used these weak-coupling estimates of Z(3, 3) and of 
Z(7, 7) in the figures to characterize the accuracy of Wilson's method at 
 =10. 

C O N C L U S I O N  

On the basis of the data reported here and displayed in the tables and 
figures, we conclude that the simplicial method is more accurate than 
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Wilson's  lattice gauge theory for U(1)3 at intermediate and strong 
coupling. The better accuracy of the simplicial me thod  is due to its use of 
the act ion and domain  of  integrat ion of the exact theory, unaltered apar t  
from the granulari ty of the simpliciat lattice. Wilson's  act ion and domain  of 
integration are close to those of the exact theory for weak coupling, but not  
for intermediate or s t rong coupling. 

The act ion of the simplicial me thod  possesses gauge invariance only 
up to the granulari ty of the lattice. For  U(1)3 in the temporal  gauge, this 
lack of exact gauge invariance was unimpor tan t ;  whether it would matter  
for a non-Abel ian gauge theory is an open question. We are now 
investigating this quest ion for SU(2)3. 
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